Ready To Flies

iPhoneOgraphy – 29 Sep 2016 (Day 273/366)

True flies are insects of the order Diptera, the name being derived from the Greek di = two, and ptera = wings. Insects of this order use only a single pair of wings to fly, the hindwings being reduced to club-like balancing organs known as halteres. Diptera is a large order containing an estimated 1,000,000 species including horse-flies, crane flies, hoverflies and others, although only about 150,000 species have been described.

Flies have a mobile head, with a pair of large compound eyes, and mouthparts designed for piercing and sucking (mosquitoes, black flies and robber flies), or for lapping and sucking in the other groups. Their wing arrangement gives them great manoeuvrability in flight, and claws and pads on their feet enable them to cling to smooth surfaces. Flies undergo complete metamorphosis; the eggs are laid on the larval food-source and the larvae, which lack true limbs, develop in a protected environment, often inside their source of their food. The pupa is a tough capsule from which the adult emerges when ready to do so; flies mostly have short lives as adults.

Diptera is one of the major insect orders and are of considerable ecological and human importance. Flies are important pollinators, second only to the bees and their Hymenopteran relatives. Flies may have been among the evolutionarily earliest pollinators responsible for early plant pollination. Fruit flies are used as model organisms in research, but less benignly, mosquitoes are vectors for malaria, dengue, West Nile fever, yellow fever, encephalitis, and other infectious diseases, and houseflies spread food-borne illnesses. Flies can be annoyances especially in some parts of the world where they can occur in large numbers, buzzing and settling on the skin or eyes to bite or seek fluids. Larger flies such as tsetse fly and screwworm cause significant economic harm to cattle. Blowfly larvae, known as gentles, and other dipteran larvae, known more generally as maggots, are used as fishing bait and as food for carnivorous animals. They are used in medicine in debridement to clean wounds.

Flies are adapted for aerial movement and typically have short and streamlined bodies. The first tagma of the fly, the head, bears the eyes, the antennae, and the mouthparts (the labrum, labium, mandible, and maxilla make up the mouthparts). The second tagma, the thorax, bears the wings and contains the flight muscles on the second segment, which is greatly enlarged; the first and third segments have been reduced to collar-like structures, and the third segment bears the halteres, which help to balance the insect during flight. The third tagma is the abdomen consisting of 11 segments, some of which may be fused, and with the 3 hindermost segments modified for reproduction.

Flies have a mobile head with a pair of large compound eyes on the sides of the head, and in most species, three small ocelli on the top. The compound eyes may be close together or widely separated, and in some instances are divided into a dorsal region and a ventral region, perhaps to assist in swarming behaviour. The antennae are well-developed but variable, being thread-like, feathery or comb-like in the different families. The mouthparts are adapted for piercing and sucking, as in the black flies, mosquitoes and robber flies, and for lapping and sucking as in many other groups. Female horse-flies use knife-like mandibles and maxillae to make a cross-shaped incision in the host’s skin and then lap up the blood that flows. The gut includes large diverticulae, allowing the insect to store small quantities of liquid after a meal.

For visual course control, flies’ optic flow field is analyzed by a set of motion-sensitive neurons. A subset of these neurons is thought to be involved in using the optic flow to estimate the parameters of self-motion, such as yaw, roll, and sideward translation. Other neurons are thought to be involved in analyzing the content of the visual scene itself, such as separating figures from the ground using motion parallax. The H1 neuron is responsible for detecting horizontal motion across the entire visual field of the fly, allowing the fly to generate and guide stabilizing motor corrections midflight with respect to yaw. The ocelli are concerned in the detection of changes in light intensity, enabling the fly to react swiftly to the approach of an object.

Like other insects, flies have chemoreceptors that detect smell and taste, and mechanoreceptors that respond to touch. The third segments of the antennae and the maxillary palps bear the main olfactory receptors, while the gustatory receptors are in the labium, pharynx, feet, wing margins and female genitalia, enabling flies to taste their food by walking on it. The taste receptors in females at the tip of the abdomen receive information on the suitability of a site for ovipositing. Flies that feed on blood have special sensory structures that can detect infrared emissions, and use them to home in on their hosts, and many blood-sucking flies can detect the raised concentration of carbon dioxide that occurs near large animals. Some tachinid flies (Ormiinae) which are parasitoids of bush crickets, have sound receptors to help them locate their singing hosts.

Diptera have one pair of fore wings on the mesothorax and a pair of halteres, or reduced hind wings, on the metathorax. A further adaptation for flight is the reduction in number of the neural ganglia, and concentration of nerve tissue in the thorax, a feature that is most extreme in the highly derived Muscomorpha infraorder. Some species of flies are exceptional in that they are secondarily flightless. The only other order of insects bearing a single pair of true, functional wings, in addition to any form of halteres, are the Strepsiptera. In contrast to the flies, the Strepsiptera bear their halteres on the mesothorax and their flight wings on the metathorax. Each of the fly’s six legs has a typical insect structure of coxa, trochanter, femur, tibia and tarsus, with the tarsus in most instances being subdivided into five tarsomeres. At the tip of the limb is a pair of claws, and between these are cushion-like structures known as pulvilli which provide adhesion.

The abdomen shows considerable variability among members of the order. It consists of eleven segments in primitive groups and ten segments in more derived groups, the tenth and eleventh segments having fused. The last two or three segments are adapted for reproduction. Each segment is made up of a dorsal and a ventral sclerite, connected by an elastic membrane. In some females, the sclerites are rolled into a flexible, telescopic ovipositor.

Flies are capable of great manoeuvrability during flight due to the presence of the halteres. These act as gyroscopic organs and are rapidly oscillated in time with the wings; they act as a balance and guidance system by providing rapid feedback to the wing-steering muscles, and flies deprived of their halteres are unable to fly. The wings and halteres move in synchrony but the amplitude of each wing beat is independent, allowing the fly to turn sideways. The wings of the fly are attached to two kinds of muscles, those used to power it and another set used for fine control.

Flies tend to fly in a straight line then make a rapid change in direction before continuing on a different straight path. The directional changes are called saccades and typically involve an angle of 90°, being achieved in 50 milliseconds. They are initiated by visual stimuli as the fly observes an object, nerves then activate steering muscles in the thorax that cause a small change in wing stroke which generate sufficient torque to turn. Detecting this within four or five wingbeats, the halteres trigger a counter-turn and the fly heads off in a new direction.

Flies have rapid reflexes that aid their escape from predators but their sustained flight speeds are low. Dolichopodid flies in the genus Condylostylus respond in less than 5 milliseconds to camera flashes by taking flight. In the past, the deer bot fly, Cephenemyia, was claimed to be one of the fastest insects on the basis of an estimate made visually by Charles Townsend in 1927. This claim, of speeds of 600 to 800 miles per hour, was regularly repeated until it was shown to be physically impossible as well as incorrect by Irving Langmuir. Langmuir suggested an estimated speed of 25 miles per hour.

Although most flies live and fly close to the ground, a few are known to fly at heights and a few like Oscinella (Chloropidae) are known to be dispersed by winds at altitudes of up to 2000 ft and over long distances. Some hover flies like Metasyrphus corollae have been known to undertake long flights in response to aphid population spurts.

Males of fly species such as Cuterebra, many hover flies, bee flies (Bombyliidae) and fruit flies (Tephritidae) maintain territories within which they engage in aerial pursuit to drive away intruding males and other species. While these territories may be held by individual males, some species form leks with many males aggregating in displays. Some flies maintain an airspace and still others form dense swarms that maintain a stationary location with respect to landmarks. Many flies mate in flight while swarming.

Shot & Edited using iPhone 6+


About The Inspiration Shots

My name is Tommy Too and I'm a newbie in photography and blogging. The intention of creating this blog is to share some of my work and to keep track the improvement of my photography skill. Nevertheless the most important thing is to getting feedback or comment from other professional photographer just like you.

Posted on September 29, 2016, in iPhoneOgraphy 366, Photography and tagged , , , , . Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: